

Centro de Pesquisas de Energia Elétrica

Grupo Eletrobrás

Eduardo T. Serra

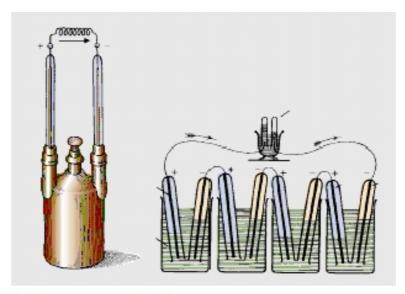
DIRETORIA DE P&D

José Geraldo de M. Furtado

DEPTO. DE TECNOLOGIAS ESPECIAIS

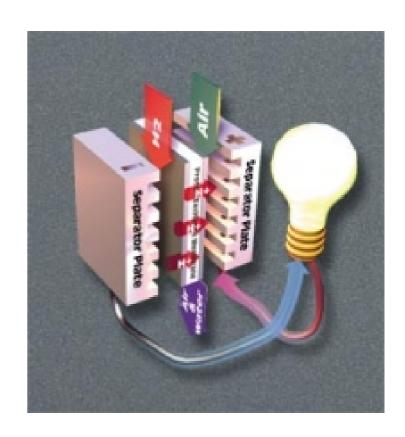
Roteiro da Apresentação

- Introdução
- Células a Combustível
 - Aspectos Básicos
 - Aplicações
- Inserção no Mercado
 - Aspectos Críticos
 - Análise Técnico-econômica
- Atividades do CEPEL
 - Unidade de Demonstração (5kW)
 - Reforma de Etanol
 - Desenvolvimento de Componentes
 - Modelagem Aproveitamento do rejeito térmico
 - Análise técnico-econômica
- Conclusões

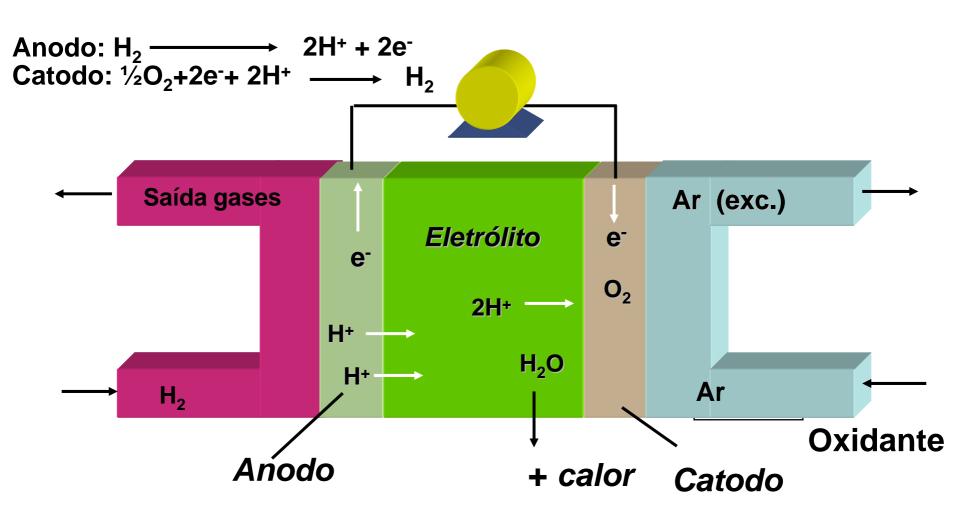

Unidade Ilha do Fundão

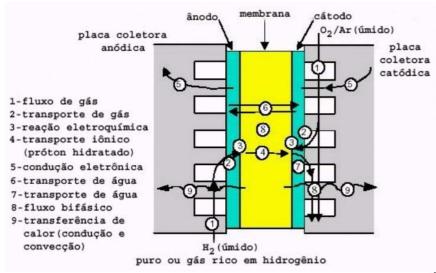
Unidade Adrianópolis

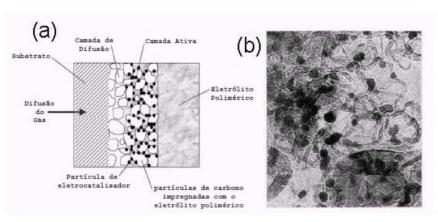
Originalmente concebidas em 1839 por William Grove, como o processo inverso da eletrólise da água;

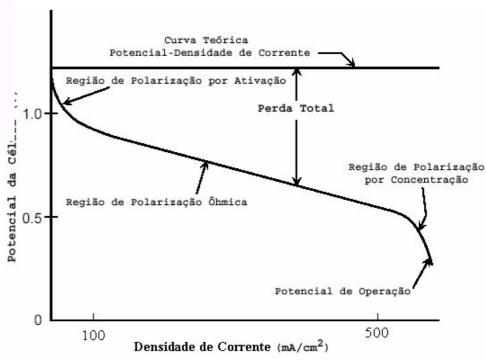


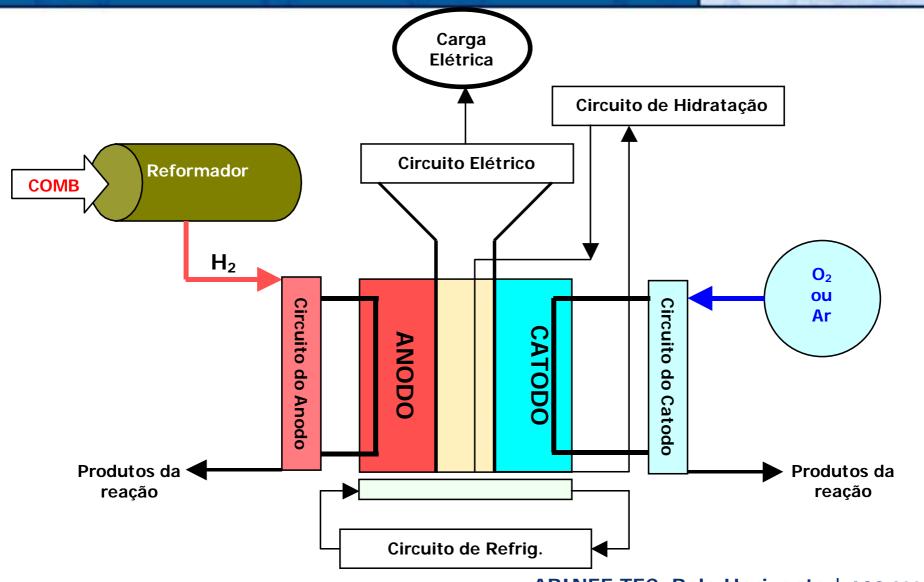
Grove's historic fuel cell (1839)


São dispositivos eletroquímicos que convertem a energia química de uma reação <u>diretamente</u> em energia elétrica.


- □ Funciona como uma bateria continuamente alimentada;
- □ Transporte iônico ocorre através do conjunto eletrodo/eletrólito;
- □ Enquanto houver suprimento de combustível e oxidante (ar/O₂) – permanece operando;
- □ Converte hidrogênio e ar (ou O₂ puro) em água reverso da eletrólise e energia (elétrica e térmica).







$$\eta_{\text{REAL}} = \frac{V_{\text{REAL}}}{V_{\text{IDEAL}}} = 1 - \frac{(\varphi_{\text{Ativ}} + \varphi_{\text{Ohm}} + \varphi_{\text{Conc}})}{1,229}$$

Vantagens:

- Perspectiva de alta eficiência e confiabilidade;
- Excelente desempenho em cargas parciais;
- Ausência ou baixas emissões;
- Expectativa de intervalos elevados entre falhas;
- Silenciosas pela ausência de partes móveis;
- Modularidade e operação remota;
- Flexibilidade de utilização de combustíveis

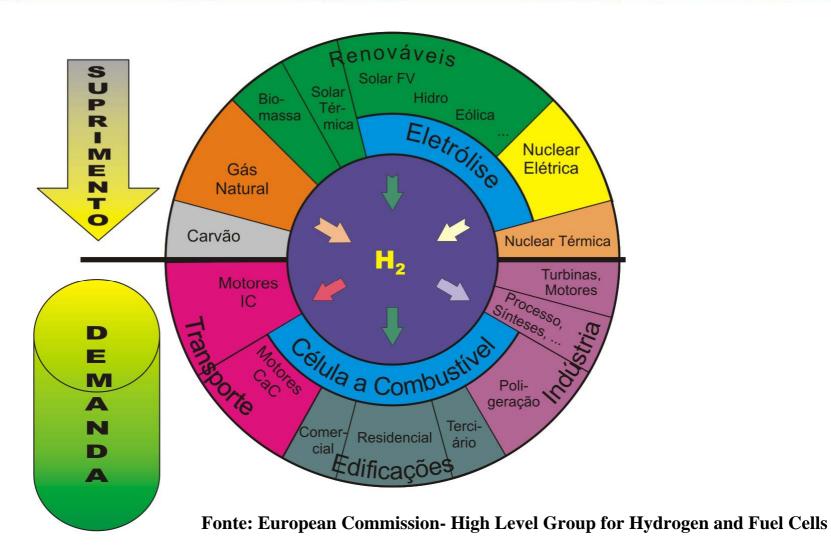
Desvantagens:

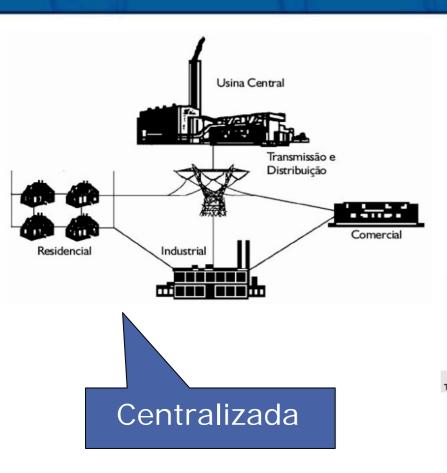
- Vida útil limitada (vida útil real desconhecida);
- Eficiência elétrica decrescente ao longo da vida;
- Investimento inicial ainda muito elevado;
- Poucas unidades de demonstração;
- Poucos provedores da tecnologia;
- Tecnologia pouco divulgada para geração estacionária;

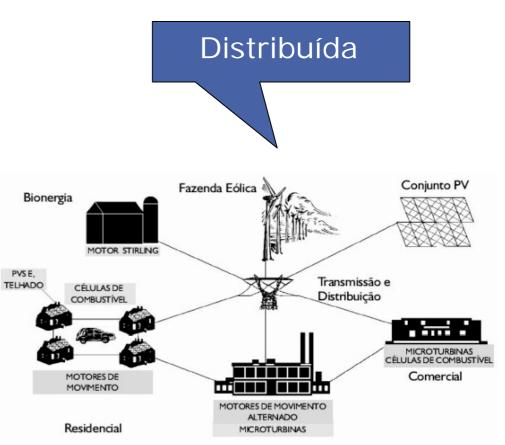
Célula Combustível (Tipo)	Eletrólito	Temperatura (°C)	Características	Combustível e Oxidante	Ion de Transp.	Reação Anódica e Reação Catódica
AFC (Alcalina)	Hidróxido de Potássio	50 - 120	Intolerante ao CO ₂ (< 50 ppm)	Comb.: H ₂ Oxidante: O ₂ +(H ₂ O)	OH ⁻	$H_2+OH = H_2O+2e$ $1/2 O_2+H_2O+2e = 2OH^{-1}$
PAFC (Ácido Fosfórico)	Ácido Ortofosfórico	180 - 210	Moderadament e tolerante ao CO (< 2 %)	Comb.: GN ou H ₂ Oxidante: Ar	H⁺	$H_2 = 2H^+ + 2e$ $1/2 O_2 + H_2O + 2e = 2OH^-$
PEMFC (Membrana Polimérica)	Ácido Sulfônico em Polímero	60 - 110	Intolerante ao CO (< 10 ppm)	Comb.: GN, Metanol ou H₂ Oxidante: Ar	Н⁺	$H_2 = 2H^+ + 2e$ $1/2 O_2 + H_2O + 2e = 2OH^-$
DMFC (Metanol Direta)	Ácido Sulfúrico ou Polimérico	45 - 100		Comb.: Metanol Oxidante: Ar	Н⁺	$CH_3OH + H_2O = CO_2 + H^+ + 6e$ 1 $\frac{1}{2}O_2 + 6H^+ + 6e = 3H_2O$
MCFC (Carbonato Fundido)	Mistura de Carbonatos de Lítio e Potássio	630 - 650	Totalmente tolerante ao CO	Comb.: GN, Gás de Síntese Oxidante: Ar + CO ₂	CO ³⁻	$H_2+CO_3-=H_2O+CO_2+2e$ $V_2O_2+CO_2+2e=CO_3^{-2}$
SOFC (Óxido Sólido)	Zircónia estabilizada com Ytria	900 - 1000	Totalmente tolerante ao CO	Comb.: GN, Gás de Síntese Oxidante: Ar	0-	$H_2+20^{-2}-=2H_2O+4e$ $O_2+4e=20^{-2}$


Célula a Combustível Aplicações

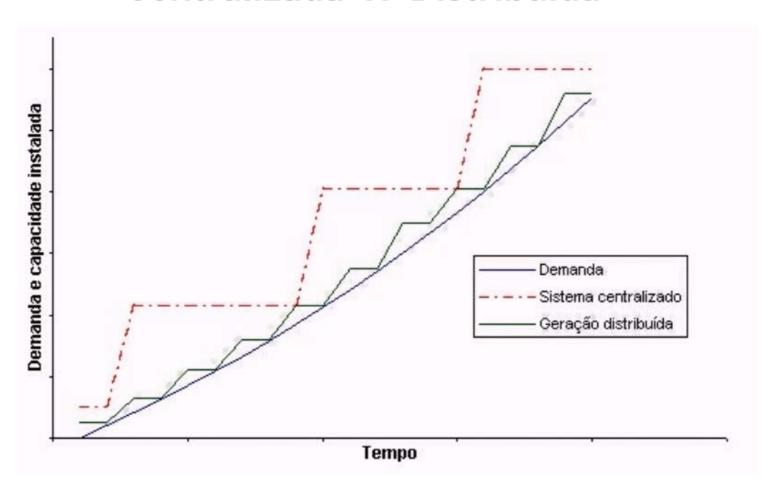
Aplicações Típicas		entos Ele Portáteis	trônicos	Gera Reside	=	Veicular		ação ibuída
Potência (Watts)	1	10	100	1K	10K	100K	1M	10M
Principais Vantagens	Densidad elevada	le de ener que as ba	_	Alta efic	ciência, E nulas	missões		ciência, poluição,
Faixa de Aplicação dos Diferentes Tipos de Células a Combustível		DM	PEI	MFC		SO	FC	FC


Célula a Combustível Combustíveis e Aplicações


Célula a Combustível Produção de Hidrogênio



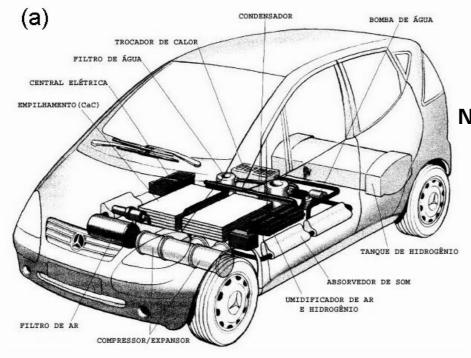
Célula a Combustível Aplicações – Geração Estacionária



Célula a Combustível Aplicações — Geração Estacionária

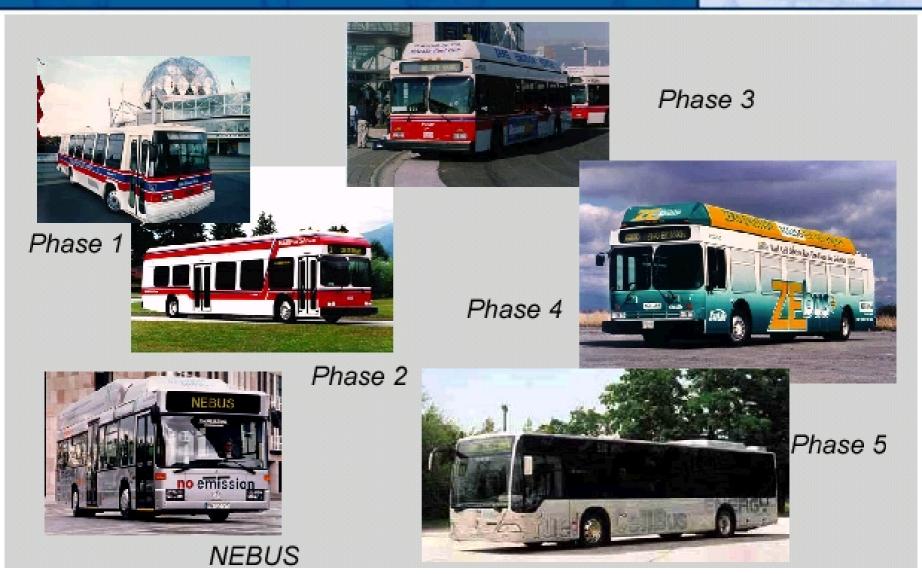
Centralizada X Distribuída

Célula a Combustível Aplicações — Geração Estacionária



Célula a Combustível Aplicações Veiculares

NECAR 4 – Daimler-Chrysler



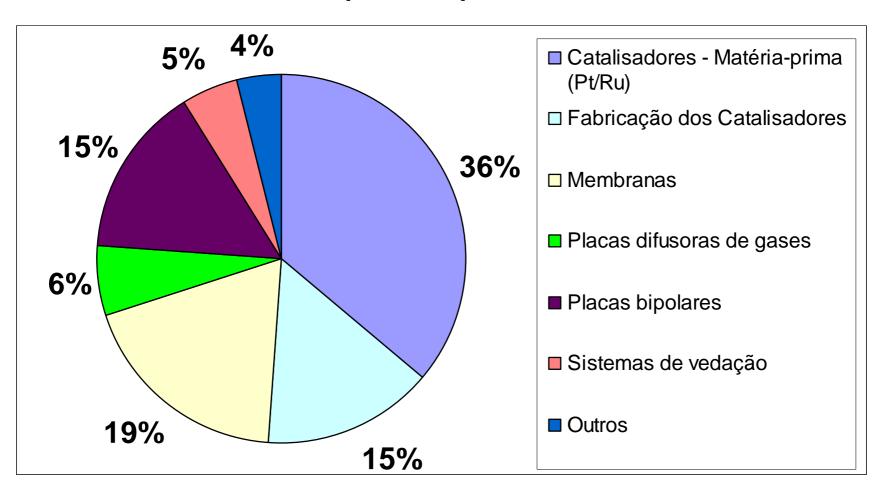
General Motors

Célula a Combustível Aplicações Veiculares

Inserção no Mercado Fatores Críticos

- Custo (produção, instalação e manutenção);
- Escala de produção (unidades por ano);
- Número de fabricantes de componentes e unidades;
- Receptividade da sociedade (segurança, normas, padrões);
- Concorrência entre mercados de energia elétrica e insumos (GN, hidrogênio, etanol, metanol, etc);
- Eficiência e durabilidade;
- Competição entre tecnologias de GD e entre tecnologias de CaC;
- Evolução tecnológica (tolerância a contaminantes, materiais e engenharia dos componentes e engenharia de operação/controle).

Inserção no Mercado Fatores Críticos


Eficiência e Custo Relativo dos Componentes

Componente	Eficiência	Custo Relativo
Reformador (Processador de combustível)	79%	40%
Empilhamento de CaC (Fuel Cell Stack)	57%	27%
Condicionamento de Potência	95%	18%
Controle e Instrumentação	90%	15%
Total	39%	100%

Inserção no Mercado Fatores Críticos

Custo Relativo para Preparação de MEA's

Inserção no Mercado Fatores Críticos

Mercado ⇒ Parâmetros ↓	Doméstico	Comercial	Industrial
Gás natural (US\$/kWh)	0,02-0,04	0,02-0,04	0,01 - 0,03
Energia Elétrica (US\$/kWh)	0,08 - 0,16	0.08 - 0.16	0,04 - 0,12
Vida Útil da CaC (Anos) ⇒	5 – 12	5 - 12	5 – 12
Investimento "aceitável" (US\$/kW)	600 1400	400 1800	500 800

Unidade PEMFC tamanho (kW)	Baixo Volume de Produção (10.000 unid/ano)		Alto Volume de Produção (100.000 unid/ano)		
	Preço (US\$/unid.)	US\$/kW	Preço (US\$/unid.)	US\$/kW	
$10~\mathrm{kW}$	16.000	1.600	5.000	500	
25 kW	25.000	1.000	7.500	300	
50 kW	40.000	800	12.000	240	

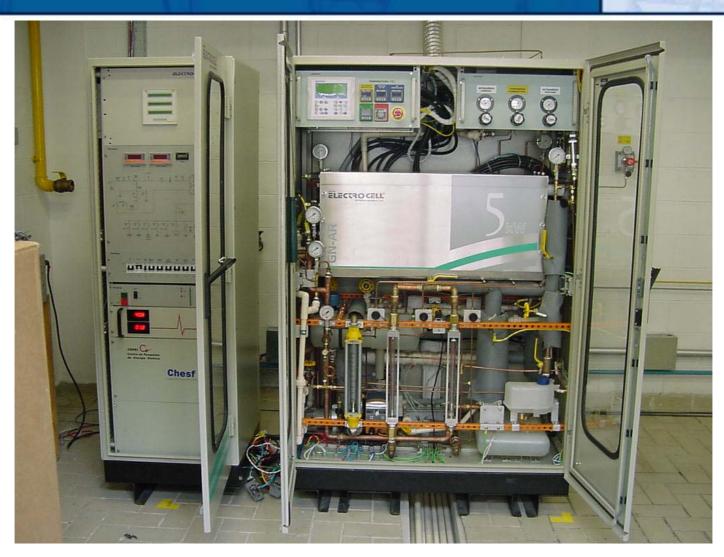
Inserção no Mercado Fatores Críticos

Combustível	PCI por unidade de massa	PCI por unidade de volume	Massa específica	Referência R\$ ^(*)	R\$/GJ
Hidrogênio	119.600 kJ/kg	9.967 kJ/m ³	0,083 kg/m ³	3/m³ a 18/m³	300 a 1.800
Gás natural	49.694 kJ/kg	35.780 kJ/m ³	0,72 kg/m ³	0,50/m³ a 1,60/m³	14 a 45
GLP	46.044 kJ/kg	100.836 kJ/m ³	2,19 kg/m ³	29/butijão de 13kg	48
Etanol hidratado	26.378 kJ/kg	21.334 kJ/L	0,809 kg/L	1,57/L	74
Metanol	19.900 kJ/kg	15.820 kJ/L	0,795 kg/L	1,06/L ^(**)	67 ^(**)
Gasolina	44.173 kJ/kg	32.776 kJ/L	0,742 kg/L	2,20/L	67
Diesel	43.335 kJ/kg	36.922 kJ/L	0,852 kg/L	1,54/L	42

(*) Preços: base junho/2003 (**) Metanol: Preço "virtual"

Atividades do CEPEL

- Especificação de sistemas, desenvolvimento e avaliação de desempenho de componentes de sistemas de CaC (PEMFC e SOFC);
- Desenvolvimento de reformador de etanol em parceria com outras instituições (INT e IPEN)
- Simulação e controle de sistemas de geração, à base de CaC, no âmbito da GD;
- Modelagem de sistemas de geração para otimização operacional e aproveitamento do rejeito térmico das CaC e do reformador de combustível;
- Avaliação técnica e econômica de sistemas à base de CaC.

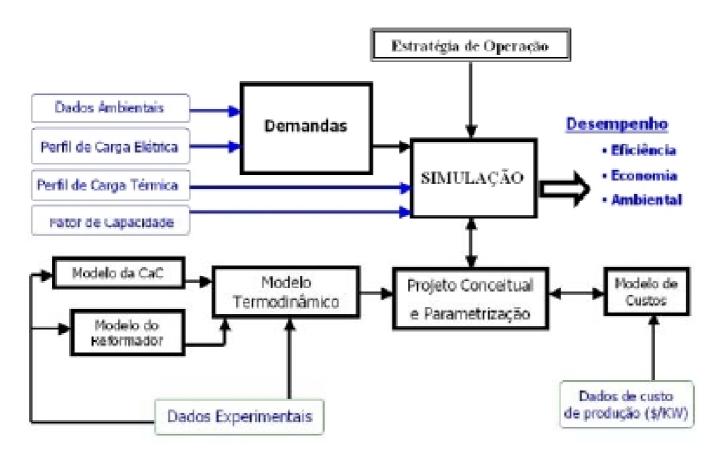

Atividades do CEPEL Unidade de Demonstração

Atividades do CEPEL Unidade de Demonstração

Atividades do CEPEL Reforma de Etanol

- ☐ Projetos do Fundo Setorial CT-Energ e CHESF/ANEEL
- □Parceria CEPEL/INT/IPEN
- Objetivos
 - □ Estudar a cinética das reações de reforma do etanol
 - Projetar os reatores para a reforma do etanol e para as reações de "shift" e de oxidação do CO
 - □ Estudar uma rota alternativa de purificação do gás de reforma, através de permeação em membrana de paládio
 - □ Construir o sistema de produção de hidrogênio a partir do etanol e avaliar o desempenho (eficiência e pureza do H₂)
 - □ Integrar o reformador à CaC existente no CEPEL.

Atividades do CEPEL Desenvolvimento de Componentes



Desenvolvimento de placas separadoras metálicas revestidas

Atividades do CEPEL Modelagem

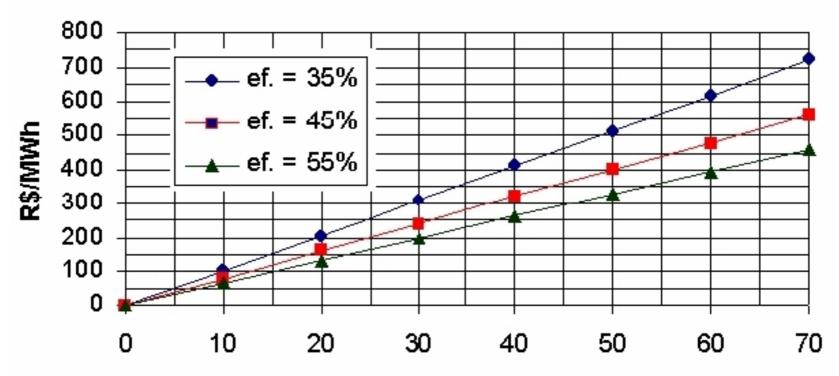
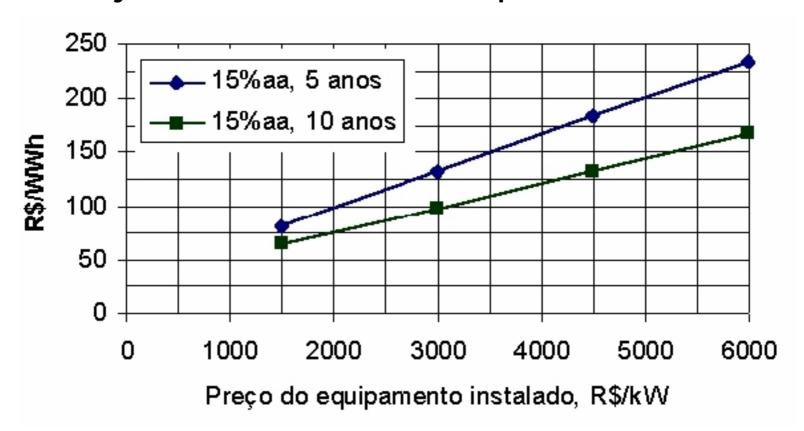
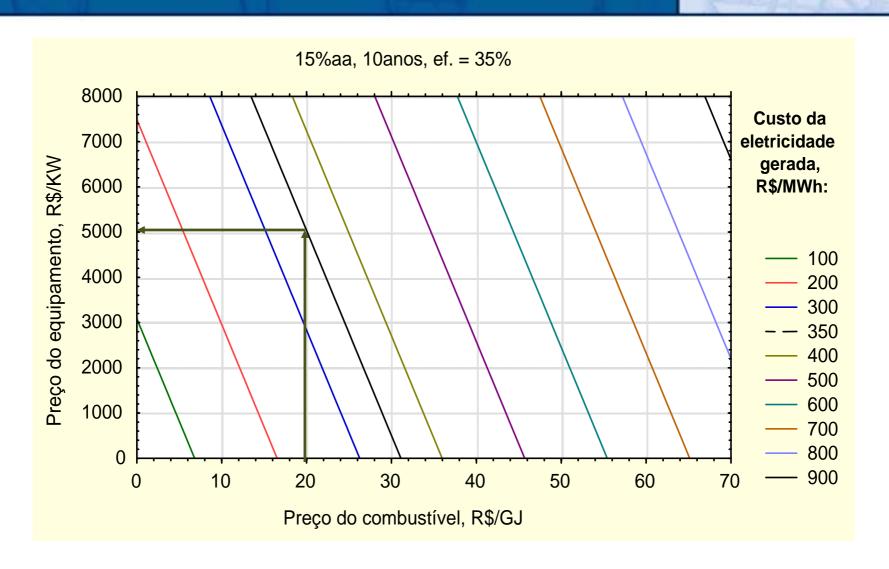
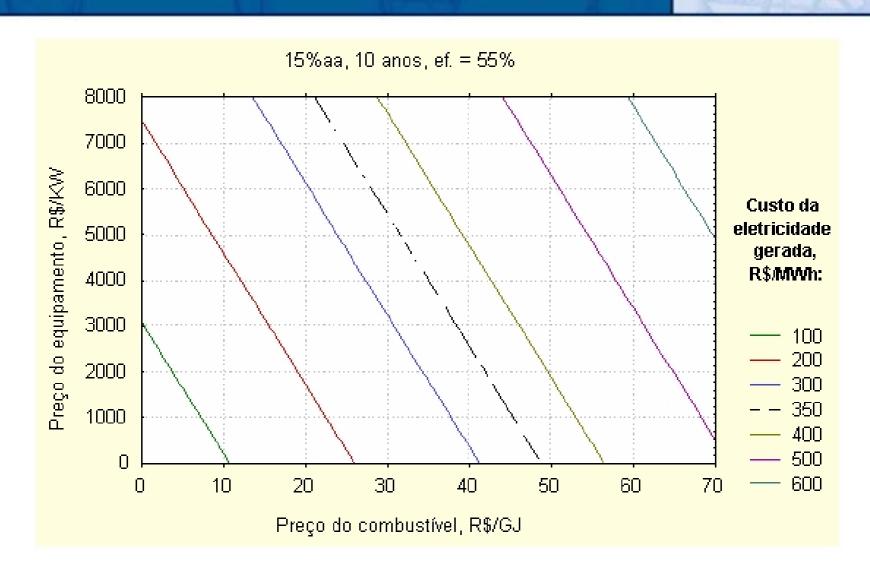


Diagrama de Blocos do Projeto de Modelagem do Sistema Otimização Operacional e Aproveitamento do Rejeito Térmico

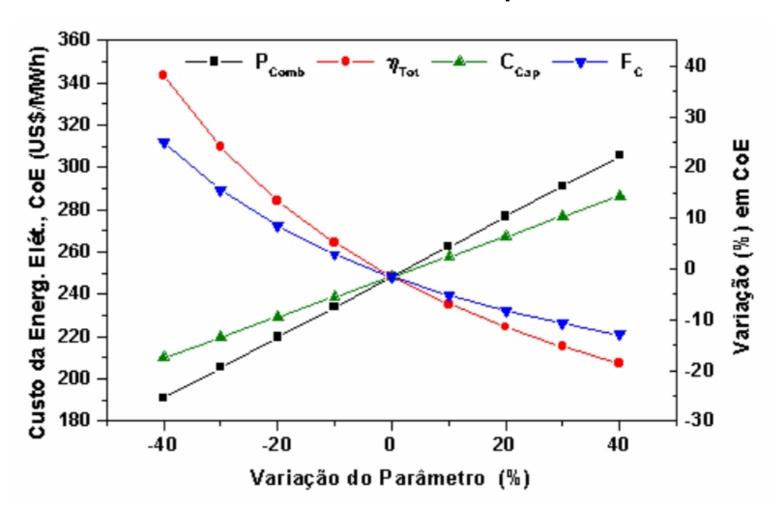

Parcela do custo de geração devido ao combustível, em função do preço específico do combustível e da eficiência elétrica considerada.


Preço do combustível por unidade de energia, R\$/GJ


Parcela do custo de geração devido aos investimentos e ao tempo de amortização do investimento. A parcela de O & M já está somada nas curvas apresentadas.

Caso Base da Análise de Sensibilidade

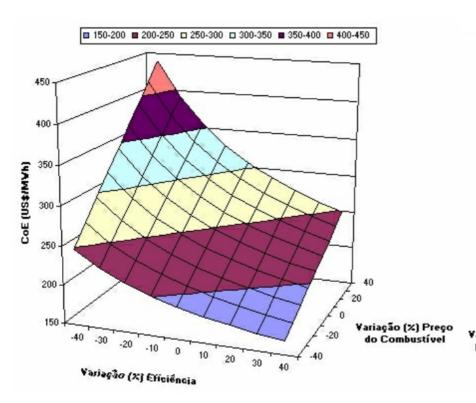
Parâmetro	Valor no Caso Base	Variação
P_{Comb}	11,43 US\$/GJ	
$C_{ m Cap}$	2.000 US\$/kW	400/ 2 +400/
$F_{\rm C}$	0,7143	-40% a +40%
η_{Tot}	0,288	
FA(j = 0.15; n=5)	0,2983	Constante
CO&M	0,01 US\$/kWh	Constante

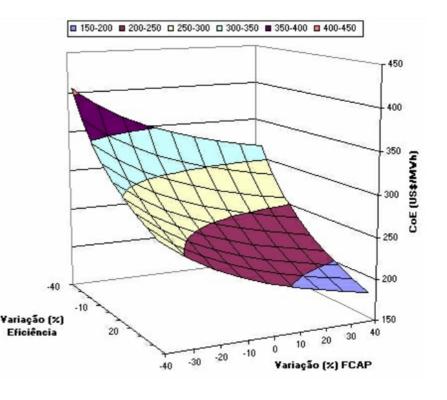

$$CoE = f(P_{Comb}, \eta_{Tot}, C_{cap}, F_c)$$

$$\text{CoE}\left(\text{US\$/MWh}\right) = 3.6 \, \frac{P_{\text{Comb}} \, \left(\text{US\$/GJ}\right)}{\eta_{\text{Tot}}} + 10^{\,3} \cdot \text{CO \& M(US\$/kWh)} \, + \frac{\text{FA}(j, \, n)}{8.76 \cdot F_{\text{C}}} \cdot \text{C}_{\text{Cap}}(\text{US\$/kW})$$

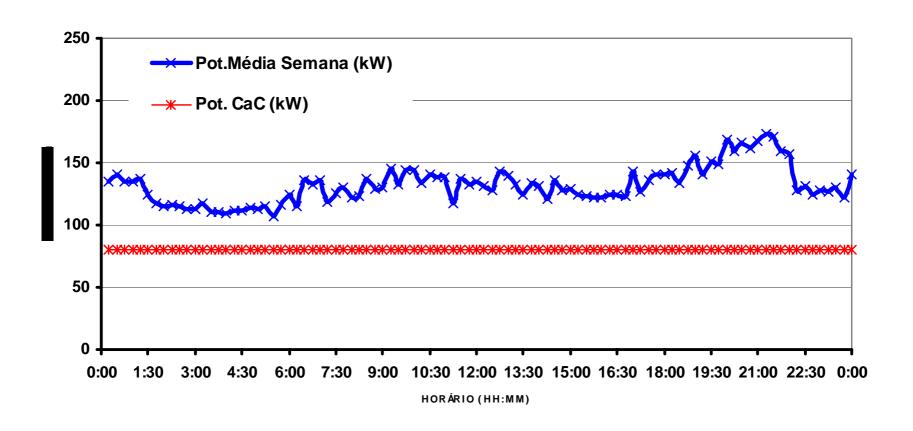
$$\delta CoE = C_1 \cdot \delta P_{\text{Comb}} - \frac{C_2}{\eta_{\text{Tot}}^2} \cdot \delta \eta_{\text{Tot}} + C_3 \cdot \delta C_{\text{Cap}} - \frac{C_4}{F_{\text{C}}^2} \cdot \delta F_{\text{C}}$$

Análise de sensibilidade monoparamétrica





Análise de sensibilidade biparamétrica


$$\delta C \diamond E = C_1 \cdot \delta P_{\text{Comb}} - \frac{C_2}{\eta_{\text{Tot}}^2} \cdot \delta \eta_{\text{Tot}}$$

$$\delta C \diamond E = \frac{C_2}{\eta_{\text{Tot}}^2} \cdot \delta \eta_{\text{Tot}} - \frac{C_4}{F_c^2} \cdot \delta F_c$$

Edifício residencial de classe média com 116 unidades

DADOS DE ENTRA	DA	
I. Carga Elétrica		
Demanda de Pico	173.0	kV
Consumo Anual de Eletricidade	1,158,728	kWh/and
Demanda Mínima	106.6	kV
Demanda Média	132.3	kV
II. Carga Térmica		
Demanda Térmica Anual	2,760.3	GJ/an
Forma de Aquecimento de Água	2	Chuv=1 Gas=
Deslocamento % Anual da Carga Térmica	100%	9
Deslocamento Anual do Consumo de Gás	2,760.3	GJ/an
Temperatura Requerida	60	٥(
Eficiência do Sistema de Aquecimento	85%	9
Energia Térmica Requerida	3,247.5	
III. Célula a Combustível	3,247.3	
Potência	80.1	kV
Fator de Carga sem Venda de EE para a		
Concessionária	100%	9,
Fator de Carga com Venda de EE para a	4000/	
Concessionária	100%	9
Meses de Operação por Ano	12	mês/an
Potência Média de Operação	80.1	KV
Eficiência Elétrica	35%	9
Eficiência Térmica	45%	9
Venda de Energia para a Concessionária?	1	S=1/N=2
Preço de Venda	0.082	R\$/kWI
Custo Unitário de Instalação da CaC	2,201.41	US\$/kV
Custo de Instalação da CaC	470,686.46	R
IV. Custos da Energia		
Demanda	0.00	R\$/kW/mê
Eletricidade (Média Residencial Light)	0.316	R\$/kW
Eletricidade (Média Light)	0.216	R\$/kWl
Combustível (Gás Natural Industrial)	22.21	R\$/G
Custo Marginal de Capacidade Instalada	131.20	R\$/kWan
Incentivo/Benefício Concedido pela Concessionária EE	30.00%	9
Desconto na tarifa de GN	0%	9
Manutenção variável	0.040	R\$/kW
Manutenção fixa	27.065.13	R
Forma de Cobrança da Manutenção	1	Var=1 Fixa=
V. Fatores Econômicos		
Taxa de Juros	15%	%a:
Vida Útil	10	an
Fator de Anualização do Investimento	0.2240	an
VI. Forma de Operação	0.2240	
Acompanhamento de Carga ou Potência Fixa	1	Acomp=1 Fixa=
A CaC Posterga Investimentos para a	1	Acomp=1 Fixa=
Concessionária?	-	9/
Fator de Carga Médio da Concessionária	69%	

DADOS DE SAÍDA		
I. Energia Associada à CaC		
I.1. Energia Elétrica Produzida	701,620	kWh/and
I.2. Energia Térmica Produzida	3,247.8	GJ/an
I.3. Energia Requerida do Combustível	7,216.7	GJ/an
I.4. Combustível Cons. (Volume) GN Acomp. Carga	183,369	Nm3/an
II. Energia Deslocada pela CaC		
II.1. Redução na Demanda Anual com Acomp.de Carga	80.1	kW.an
II.1a. Redução na Demanda Anual com CaC na Base	80.1	kW.an
II.2. Eletricidade Consumida no Imóvel	701,620	kWh/an
II.3. Eletricidade Vendida à Concessionária	0	kWh/an
II.4. Energia Térmica Aproveitada	3,247.5	GJ/an
III. Economia Energética Anual (Consumidor)		
III.1. Eletricidade	221,712.04	R\$/an
III.2. Energia Térmica	72,137.22	R\$/an
III.3. Receita de Venda de Eletricidade	0.00	R\$/an
IV. Despesas Anuais (Consumidor)		
IV.1. Combustível	160,307.20	R\$/an
IV.2. Manutenção	28,099.90	R\$/an
IV.3. Amortização do Investimento	105,442.16	R\$/an
V. Incentivos/Subsídios		
V.1. Incentivo Anual Concedido pela Concessionária	0.00	R\$/an
V.2. Desconto na tarifa de Gás	0.00	R\$/an
VI. Balanços Econômicos		
VI.I. CONSUMIDOR		
VI.I.a. Economias e Receitas Anuais	293,849.26	R\$/an
VI.I.b. Despesas Anuais	293,849.26	R\$/an
VI.I.c. Incentivos e Subsídios	0.00	R\$/an
GANHO (PERDA) PARA O CONSUMIDOR	0.00	R\$/an
VI.II. CONCESSIONÁRIA		
VI.II.a. Postergação de Investimentos (Demanda)	7,250.72	R\$/an
VI.II.b. Energia Disponibilizada (Venda Tarifa Média)	104,763.15	R\$/an
VI.II.c. Energia Residencial não Vendida após CaC	221,712.04	R\$/an
GANHO (PERDA) PARA A CONCESSIONÁRIA	(109,698.17)	R\$/an
·		

CÉLULAS A COMBUSTÍVEL:

Uma Alternativa para Geração de Energia e sua Inserção no Mercado Brasileiro

Eduardo T. Serra José Geraldo de M. Furtado Guilherme Fleury W. Soare Alcides Codeceira Neto

Livro publicado pelo CEPEL

- Introdução
- Células a Combustível
- O Combustível das Células a Combustível
- Custos Futuros
- Cenários de Progressão Tecnológica
- Mercado
- Impactos da Inserção das Células a Combustível no Mercado das Concessionárias de Energia Elétrica

Conclusões

- □ O sistema elétrico brasileiro difere substancialmente da maioria dos países desenvolvidos, pela predominância da geração hidráulica de energia elétrica;
- □ Fatores ambientais <u>ainda</u> não pressionam o emprego de células a combustível na geração estacionária;

□ Existem nichos de mercado para as células a combustível, relacionados à qualidade e confiabilidade da energia elétrica gerada;

Conclusões

☐ A competição entre o custo da energia elétrica e o dos insumos energéticos pode criar um mercado para células a combustível (residencial e comercial), desde que haja uma redução de custo das mesmas (US\$/kW);

□ O atendimento de comunidades isoladas através de células a combustível pode ser atrativo pela diversidade de combustíveis.

Conclusões

☐ Há necessidade de aperfeiçoamento da tecnologia de CaC (aumento da eficiência e redução dos custos de investimento);

□ As CaC podem se beneficiar de subsídios em um cenário de incentivos a implementação de tecnologias eficientes e limpas;

□ O aproveitamento e a contabilização do rejeito térmico (co-geração - aquecimento ou refrigeração) implica em aumentar a eficiência de utilização do combustível.

Obrigado

Contato: Eduardo T. Serra

Pesquisador Consultor

Diretoria de P&D

etserra@cepel.br

(21) 2598 6163

Ministério de Minas e Energia